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GII1fkRALINSTABILITY CRITERION

OF LAIIIITAR VELOCITY 01sTR13UT10NS*

By W< Tollmion

SUMMARY

The present paper describes the results of a stabil-
ity investigation on symmetrical velocity profiles in a
ch,annel and of “ooundary-layer profiles. The limitation to
t;lese two most important types of profiles was, however,
not d-~~.eto any limitation of our mathematical method. The
effect of the friction was assumed to be vanishing and did
not occur in the stability consideration so far as it had
not been resorted to for preparatory asymptotic consider-
ations. Proceeding QrI very General premises as regards
the form of the velocity distribution, a proof was deduced
of the elementary theorem that velocity profiles with in-
flection points are unstable. Aside from this comprehen-
sive theorem, there were obtainecl foraulas of general va-
lidity for the investiga.ted .types of profiles which dis-
closed certain information relating to wave length, wave
velocity, and amplification of the dangerous disturbances.

Dynamically, the profiles .with inflection points are
ide:iltified, according to boundary-layer theory, by the
existence of decelerating pressure gradients in such flows.
Profiles, to which this particular stability investigation
is inapplicable, may be encountered. in slightly divergent
channels or on the hydrodynarnical rear surface (behincl the
pressure minimum) of cylindrical bodies, particularly if
the body is short. They may also occur through superposi-
tion of the velocity distribution without inflection point,
with a q,uasi-sthtionary vortex patteril, w’hich can happen
in the first stages of the formation of tur’oulencee The
proved effect is, undoubtedly, of fundamental. importance
for the creation of turbulence. “
...—...—--—--.— ..--—...—._-—............-.—..-. ......... .....—.-...— . . .. . ..... . ... -.

*llEin allgerfieineS ~~riteriu~ der Instabilit&t laninarer Ge-
schwindigkeitsverteilungen .l’ jtac]lrichten von der Gesell-
schaft der Wissenschaften zu G:ttingen (h!athematik), vol.
I, no. 5, 1935, pp. 79-114,
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.

,..= . . .. . .,. ...
The transit> oti”:of’”~aminat?’flow, with i“is clean, strat-

,.. , ,,.

ified layers of flow tubes to. strongly. intermingled, irreg-
ular tu.rbulent:flow; “con’stittit~~””one“o”f“thb”most pressing
problems of modern hydrodynamics, It ..iscertain that this
fundameiltal change in typ’e of motion of the fluid is at-
tributable to an instability in the laminar flow, for lam-
inar flows of themselves would always constitute possible
solutions of the hydrodynarn~c “equations- The mathematical
derivation of the expected instability of laminar flow is,
as is known, beset with almost, insurmountable difficulties.
Wh’ile it i’s true-that the Yecent advances made on the sub-
ject are very promising, .it is e.q~?llY t~.~e that almost
every stability investigation made heretofore, relates to
~~ecj.al laminar velocity distributions. There seems to he—.——-=
a palpable lack of ‘general theorems in this field which
afford ready classification of laminar velocity profiles
according to their stability.

T]le general ifi”stabili’t”ycriterion established ~erein-

after , discloses a frequent and pow’erful mechanism of for-
mation of turbulence

.

The analys’is is to proceed on the basis of two-dimen-
sional velocity profiles, ‘the velocities in this fundamen-
tal flow themselves to be ve”tiysimp~y” distributed; that is,
tio be largely dependent only on the coordinate transverse
to the direction of flow. On this flow there are then su-
perposed disturbances” which, according to the method of
small oscillations~, ar,e cbnsider,ed as, small wave’s advanc--”
.ing in the direction “of flow. Tho disturbances themselves
shall also be’ two-’dimensional* , while the’ effect of fric-
tion on the di’st,urlances will, be disregarded. to a certain
degree. The pro%lem posed is, When can disturbances with
increasing amplitude be superposed on the basic flow?

This roughly outlined problem is by no weans new.
Back in 1880, Lord Rayleigh published an investigation

_——_—-..————————-—-..—-————..-——————————————-—--————;—————————————————

*According to ‘a note by H. B,; Squire (Proceedings of the
Royal Society of London A, 142, p. 621, 1933), the inves-
tigation of the stability of flows depending only on one
coordinate may, if the disturbance is three-dimensionals
be simply reduced to the case of” two-dimensional disturb-
ances. . . ,,.
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which above ‘e”ve”rythinge’lse gave a“’-readily ‘obtainable necrn
1. essary condition for instability. Subse uently, he again

.——

I, and again reverted to this saue problem ?reference 1). and;: even other investigators,;: appreciating the importance of
1 his findings; applied themselves to the problem’; but with-

out much success beyond the initial advance. No sufficient
condition for i-notability has been set forth thus far.

I. THX! DISTURBANCE EQUATION

Let U represent the speed ’o’fthe laminar fundamen-
tal flow parallel to coordinate x and dependent only on
the coordinate y at right angles to x. Being assumed
two-dim,ensiowal, the disturbance can le derived from a
stream function $ (X,y,t), t being the time. The veloc-
ity component of the disturbance in x direction is d*/ay,

aVin y direction, - --—.
ax

Thus the equation for the stream

function of the dis~urbance inclusive of the” friction
terms - considering that U itself complies w“ith tho hy-
drodynamic equations and with limitation to linear terms
in 4S is:

(1)

where A is the Laplace operator ;a~– + –~>,
ay

and V is t’ne

kinematic viscosity. The equation is the vortex equation
for the disturbance, which follows hy elimination of the
pressure from the hydrodynamic equations. A* is the neg-
ative vortex density of the disturbance, because A$ =

av aA$ax . –-. ___
ay ax’ at

gives the local time rate of change, u @J

the, transport .of the disturbance turbulence by means of-

the fundamental motion, - d2U a$
~~~ a~ the vortex transport in

the fundamental flow caused by the disturbance; vAA@
corresponds to the diffusion of the turbulentie. by friction.
The convective change in vortex density through the dis-
turbance motion itself is neglected as nonlinear in.view
of the assumed smallness of the disturbances. ,

Owing to the linearity of (l), the formation of Q ‘“
from partial oscillations is permissible, which may be ex-
pressed as

.
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that is, as waves traveling in direction x. In this equa-
tion the complex method of writing is employed; for phYs-
ical application,’ the real pait of the a%ove expression is
to be selected. a is a real constant and equal to 2Tr/h,
where A is the wave length of the partial disturbance;
~ may be complex equivalent to ~r + i~i. The real part

Pr gives the cycle frequency of the disturbance, and the

imaginary part @i the logarithmic increment , becoming

positive for amplified., and negative, for damped oscilla-
tions, The real part Cr Qof the quantity c = ~ is the

wave velocityg Writing (2) in (1) gives the disturbance
equation for the considered partial oscillation:

(u-c) (q)’’-a2 Q) - u“ 9 = - :- (w” - z~zv“+~4 v) (3)

or, in nondimensional form (by measuring velocities in
terms of a characteristic velocity of the basic profile,
say, t’he maximum Umax, the length in terms of a charac-

teristic width b of the -profile), as

(u-c) (cp’’-ct2q) - u“ q = - ;j’ (q”” - 2~2 @’+~4 9) (4)

Here we took the liberty of employing the same notation
for the nondimensional quailtities U, c, ~, etc- as before.

‘max bR is the Reynolds Number ————..—— ●

v

Now suppose the kinematic viscosity is very small or,
in more general terms, that the Reynolds Number R is very
large. Then the experiment is suggested of su.~pressing the
friction terms altogether to obtain an insight into the be-
havior of the disturbance through a discussion of the fric-
tionless disturbance equation

(u - c) (q” - a2 9) - u“ v = o (5)

and this is what Rayleigh actually did. He stepped from
(4) to (5) without further discussion which, however, is
naturally necessary.
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II. ANALYTICA2 PROPERTIES od TH2 $NTEGRAL oF THE
>>--- ,.,. ...=. . ,...,. _,.,_. -., ,,.,-.,....=,.,’, ... ...

DISTURBAtiCE EQUATION A~D lZWFE@f!O@ INTERNAL FRI”C!TION

I
),

,,
) Starting with the analytical behavior of the solu-

tions of (5), it is necessary to refer to a’previous re-
port %y the author (reference 2)9 We assume c to be
purely real - that is, consider neutral oscillations, nei-
ther amplified nor damped. Now it happens, as we shall
see later, that at one point within the fluid the there-
existing fundamental ‘velocity U becomes equal to the
wave velocity c of the considered part”ial oscillation.
In other words, at this point a fluid particle always os-
cillate’s in the same disturbance p-base. This point, called
the critical point, is designated with subscript o. No W
the origin of the y coordinate is placed at this criti-
cal point, and the direction of” “y is so defined that in
the vicinity U - c > () for Y > O; that is, so that Ufo

wk.ich is not to vanish, becomes positive- U is to be ca-
pable of expansion iilpower series around the critical
point to:

u 11
u = c + U’o Y + —~QY2 (6)

The critical point U. = c represents a singular
point of (5). Then two linear, independent solutions of
(5) in the vicinity of the critical point can be repre-
se-nte,din the following manner: With l?l(y) and P2 (y)

as power series in y; A and a as constants determined
from (5), we h’ave”a fundamental system of solutions through

(7)W= YP1(Y)=Y+:>r- y2+...
o

~2=p2(Y) +ACPllOgy”=l+ay2 + . ..+.\–”ylo~y ,..
0

(8)
Hereby it is to be established once for all that

log y for positive real y is purely real. ~hen U[l’
and likewise v,, does ilot disappear in the critical point,
i.e.,” the transverse component of the disttirbance, there
results a logarithmically infinite (disturbance) velocity
in the x-direction, which is contrary to the smallness of
the disturbance velocity ”assumed in the”method of small
oscillations. Regardless of the “magnitude of thti Reynolds
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Number:,’ the fr.i.ction. my-st‘be taken-:into j.a~.count.at the
critical point. The effect of the friction occurring in
a small st..r:.ip.(gf “.We order-”c:fmagnitude’. of (a R’U10).-1’3)
consists, first, in a flattening of the x component of the
disturbance at the critical point - naturally it then re-
m~i.ns f inite - and secondly. , i.n‘the appearance ‘of a phase
discontinuity in the disturbance s.. Of the possible
branches of >he log in (8). which would be mathematically
available for ‘“the continuation of the soltition toward neg-
ative y (naturally outside “ofthe minute friction layeti),.
the writer has, on the basis of previous calculations
(reference :2), chosen one.whi’ch by means of the friction,
is physically poss”ible, namely, the “analytical continua-
tion of the logarithm byway of posit”ive y through the
lower cotiplex. semiplane to neg”ative y.————— When q is rep-
resented by ‘.,. .’

becomes

u“
.1 —~ Y=”log y““” +“”UIO

u“
1 ● .* ––Q ql (log YI - in)+ Uto ..,,

.(9a)

(9b)

when y is negative.

This” transition substitution, however, signifies a.
phase discontinuity because, if the real part of

Q(y) e
i(Ux-’~t) i

s selected for representing the disturb-

ances, the .“x component of the disturbance becomes

(
u’!
––~logy ...~lo , ‘)

Cos (ax - pt) (lOa)

for positive y in the vicinity of the crj.tical point,
whereas -

.

(
u“ o

log ~y ...
,)

Cos ((XX - pt) -1-,;};———
Uto IT sin (ax-@t) (lOb)

for negative y. The result is 8. phase discontinuity w$ich
does not disappear even .for the limiting case CIR = ~.

In the present case we ‘assumed ,,c.purely Teal, and
only a very s’mall amplification’ ,(pi,> 0)$ that is, a

—. . ., ,.
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small imaginary part in c = Q= C= +.i Ci. The zero
l-i.,.. , .-

point “ofify““-’“’’-is~1’”a’ce?lat--the “po-.i-n-tU ‘=”--cr,
.—.-..

in accordance
with the pre..vious definition. Attributing complex values
to y and defining U from the power” se,ries (6), we again
seek the singular point of (5) where the analytically con-
tinued U=c= C~ + i Ct. This critical point U=c
thus lies in the complex Y plane slightly above the real

i ci

)
axis (by ––— ,Uto so that the real axis then has no longer’

a singular point of (5). Then at a sufficiently large

(
.

Reyi~olds Number ~~–
- 1./3

)
>(~ RUIO) , no friction effect

o
on the real axis needs to he considered. Now we introduce
an m coordinate shifted with respect to. y along the
imaginary axis by placing the orig”in of q in the critical
po int U=cr +ici which, for sufficiently small ci

gives

(11)

(See fig. 1.)

Denoting the value of U? and Utl at U=c
Ufc u“ ~ ,

with
and the solutions V1 and v~ in this case

are written as before:

.
(12a)

. .
U1’

~2 = 1 + ... + ––QUlc q(m) log q (12,b)

‘We only use the values of the singular solution
along the real axis y~ For positive Y.9 which is as-
sumed to le large compared to the small quantity Ci/UJ c,
we “kave:

u“
v, =l+. ..+tiTQqlJy) logy

c
(13a)

while for negative y,’ it is:

u“
V2 = 1 + ... + .&ql(y) (log ‘[yl’- ip) ,(13b)

c

—-.— .—.-——
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considering that. the pat.h~ along which the logarithm must
be analytically continued, lies below the singular point;
that is; the same transitional substitution-as for purely
real c, .which ~as” obtained t’hrough a. boundary transition
.f~om smal~ friction.* This ‘is of particular interest to us
because the neutral.oscilla.tions are yrimarily considered
as a limitin~g “case of t“he amplified asc”illations. .’

.,. .,
For small damping, on the o“ther hand, the transition

is. from ,

:.
u“c’ ““

cp2,=,1,,+ :.. —.__,VJY) log ,Y ,,,, + Ulc ,
. .

for y pos,itive to ,,,,. ~11

,~2’=1, +””.+ ––g q (7) (log~Yl + iti}
ur~ ,1

(14a),

(14b)

for y negative.

Following the exclusion of the vicinity of the crit-
ical point through special. considerations, we have in (pI
and qz , the solutions of the frictfo-nlessdisturbance

equation, particular solutions of the complete’ ‘disturbance
equation for -very large a R.. .;.

The only “remaining difficulty lies in the lowering of
the order of the differential equation hy 2 during the
change from the complete to the fr.ictionless disturbance
equation. The result was”, of cours9., only two particular
solutions and consequently noncompliance to all boundary
conditions- If the fluid passes between two walls, for
example, the tangential, and normal component of the dis-
turbance velocity must disappear at’ ‘both ‘walls. Limit ed
to the frictionless disturbance equation (inclusive of the
necessary correction at the critic,al point) , the stipula-
tion is, of course, confined to the disappearance of the
norm~.1 component only., 3ut , accordihg to the findings o.f
various investigators (reference 3) the drop of the. tan-
gential component of the disturbance to zero on the mall
at high Reynolds Numbers actually takes place in an ox-

,“.——.—————_———————————___ _.-_—_—__-——.-—_—————————_————— _______

*Even in the case that Ci/Uto , while positive, is no

longer large compared to (a R IJ’0)-1’3, the boundary
transition to very largo R a,~fords the same result when
the writerls analysis (reference 2, p. 27) is repeated for
this’ case.: ““ ~~~ : , ~ ~~ .’
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trem~ly thin layer with the result that the effect of the
wa~l-.f.ricti.on..hecoe.s.consistein$,ly$,lys.~,ller.

Besides this pair of asymptotic solutions deduced
from the frictionless disturbance equation, there exist
rapidly decreasing “boundary-layer-like solutions~’t the
inclusion of which in the frictionless solutions is neces--
sary to insure complete compliance with the boundary con-
ditions. We shall give only the most elementary example”
of such a ~oundary-layer-like solution. Designating the
distance from the wall toward the inside of the fluid yw

and considering the particular case of c having positive
real and imaginary part and being sufficiently great ,

(
–1/3

—.-
U:w > ~CLR Ulw , U~w = value of U~ at wall yw =

)o, the boundary-layer-like solution, designated V3 then
b, comes:

‘$LA/aRcyw

V3=e (15)

The addition of this inwardly rapidly decreasing solu-
tion necessary for compliance with the boundary condition
for the tangential component has but a minor effect on the
distribution’ of the amplitude of the disturbance and the
parameters a and c, as is readily proved. By suppress-
ing the explicit occurrence of the internal friction in
first asymptotic approximation for very large Reynolds
Numbers, the determination of a critical R is foregone
in favor of the desired generalization of the results. On
the other band, our investigation affords some particular
information about the type of dangerous disturbances and
constitutes for this reason a “useful preliminary for the
disturbance problem ,with explicitly occurring internal
friction.

I~Ic FORMULATION Ol? CHARACTERISTIC ’VALUE l?ROBLEl\l

Z?OR SYl\lMETRICAL VELOCITY J?ROFILES

l?ollowing these preparations., we can finally formu-
late our problem~ Tor the sake of simplicity, we first
assume two-dimensional flow through channels as the fun-
damental flow. The particular velocity profiles shall, as
stated before, change very little in the direction of mo-
tion; that is, u =’U(y), and the walls of the channel

— .L —— —
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shall he approximat elyparallel. I?urthermote, the velocity
profiles shall be symmetrical with respect to the channel
axis. At the wall, of course, U=o. Otherwise; the form
of the’ profiles: is v:ery little restricted.. profiles with
an infl~ct”ion poini ineach half; stich as may’ occur in” ~~
slightly’ divergent channels’(fig. 2) , are also” included,
Imt ’not’ prti!filesfor which U itself changes sign. This
include’s jrtifileS with” return flow as well as separation

.,.. ,. “Zdu
profiles as a “li~liting case.

(
“)= O at the wall~.

z;
At the,., . .

inflection point ,of the inblu~e~profiles (subscript s),
letlJ~~ >0, Ijflf=-e01 so.that U1’ is positive between

the wall and :~oint of inflection”; afidnegative %etween t-he
inflection point and the center-..’

l?.orthese fundamenta l,velocities , the following bound-
Zlry-value problem is to be solved:

(16)

with the, boundary condit ions that tile normal, component of
the disturbance, that” is, .~, ‘“’disa~pears at”,both walls.
The transitional” substitution suffered by, ~ at a singular
point ~nc in the case “of neutral oscillations, has been
previously es’tallished by a transition to the limit of van-
is~lint;,,fric$i~n O; di,sap~eari”ng “appl’ifiCation.. The charac-
teristic-value, problem here is, rather unusual. The real
parameter CX is assymed pied.ete”rmi”ned; the quest is for c
wkick occurs’ in”.nonlinear @nner’ in the differential equa-
tion’ (16,). Pro.bl,ems of t>ik””kind have been so little ex-

t,hat the solution in question cannot .plored c:~thema”tically,,
be ba.s$d upon gcnerb”l” e.xis,ttince~heorem.s, The ,main task
will ~e,to establish necessary, and at the same time suffi-
cient, conditions for V(y) , in order that complex charac-
teristic values c may exist, for it is readily seen that,
witlh a complex c a-s.c:~a.ract.eri,stic value the conjugate
compiex’ c“ together’ with the cotijugate cor~plex character-
istic function also represents a solution. Our interest
centers on the solu”t’ions”with am~lif icat ion, for which c
has a positive ir:aginary part.

Since U is’ symmet’ri’cal$, q may be rea~ily ,separated
into a’ symnetr,i.cal and an a“nti’symrnetrical part which, indi-.
vidually, lJUS.tsatisfy the. d,is,tuibance equation. As a re-
sult ,.we need .consid.er.only lia.lfof ‘the y-zo”ne, because
then we have. either @=O or 9=.0 in the cliannel cen-
ter in addition to the” boundary condition ~ = O at one
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,. .,;,.

wall, depending on whether the distribution of. the disturb-
* ante ampli.tud.e. w ..aho.ut..tli.e.ce.n,tral&xis of the channel

is symmetrical or antisymmetrice.1..
.,.,....,,

This sinp-l”i-f-iesmatters
I quite considerably because the problem narrows down to one

singular point”’in a senicha”nnela ..,.
I ,. .,,.

T~~e .p.artictilarlyinportant.problen o.f”’’’stabilityoft
boundary-layer: profiles. is treated in a subsequent section.

. . ..,’ ,,. ... ...4
. . .,. ,. ..,.

,.,,, ‘IV..””RAYLE1GHW 23QUATIONS .

.,, His principal result,.. summed up briefly, is a necessary—.-—————
condition for the occurrence of. amplified oscillations.

writing the differential term on the left-hand side of
(16)

(17)

we form the integral ter’m

——. ..
j% L(v) -’CP L(9)] ”dyw (18)

between the boundaries’ of, the y~zone’, the two channel walls.
2b = channel breadth. Conjugate complex quantities are
overlined. Therefore,

L(v) = @l _ ~2 + VII-.————- F (17a),. u- !Z

whence v and @ shall vanish, ‘conforming to the boundary
conditions at the zone boundarie:so The problem is to find
when a nonvanishing imaginary part of -c is possible. On
this premise there is no singular point on the real y axis

I so that the integral summarily gives: ,,

(19)

This term then must vanish for solutions of the differen-
tial equation besides the boundary conditions. If U’! ‘
does not change ”sig.n,.this i’s, however,’not.possible for’”a
Ci other than z.eio, so t:hat a.mplifibd oscillations are im-
possible except.for profiles withan inflection’ point. The
condition, however, being. only” necessary,’ IlayleighJs theo-

,.., ; ,,
. . ... ..

,..’
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rem merely states that profiles without an inflection point.
reveal no ib.stability in the “sense used here.* Any state-
ment. as to the behavior of profiles wit-h an inflection
point is as yet impossible.

Another fact brought out by Lord Rayleigh is that, by
the eventually ,neutral oscillations (ci= O, c= cr), the
wave velocity Cr of the partial oscillation must be equal
to the basic velocity at one point, thus ever assuring,the
existence of a point with U - c = O within the fluid: We
adduce a proof for this fact, whi”ch is somewhat more” simple
than Rayle;g~’s. (See reference 1, vol. Vl, 1913, p. 199;
also vol. _.

Let us assume that c > Umax (maximum value of U),

so that no singular point exists within the fluid. We com-
pare

(16)

with

f“ = Ulf f—————
u-c

(20)

that is, compare two solutions of (16) and (20) which dis-
appear at the wall (Y., = 0). In addition, let q! = f!

s for Y~ = o. Multiplication of (16) by f and (20) %y cf
followed 3Y subtraction of the results and integration
starting at one wall gives:

Yw

fcp’- flq=jct2fVdyw (21)
0

So long as ~ and f are positive, it follows:

.1
~ > f,!-+-—

Vf
and ~?f

after which, the solution of (20) becomes:

fn(~- TJ) jyw–_--E...r
o (u- c)

(22)

(23)

,. e—---- -,.------—-— .---! - .. —- ..- —— - -- . . . . . . . . . . . . . . . . . . ..

*Many profiles without inflection points nay, by applying
a correction explicitly containing the internal friction -
that is, in the second. asymptotic approximation for very
large Reynolds lTumbers, become unstable, as proved by cal-
culation on special velocity distributions- The amplifi-
cation as a result of the small friction correction is, of
course, of lower order of magnitude than that found here.
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f is therefore always positive and greater “than zero on
s- ,the other wal~; co,nse.quen%lY.3.-~ cannot disappear on the

other wall, according to (22) or, in other.’ti-ords,it is
necessary that *c < Umax.

By the same argument, c must be greater than the”min-
imum value of the fundamental velocity (zero hereafter).
The proof is the same, word for word, if we take

for f. It should be noted that for the proof of Raylei&hls
two formulas, the assumption of symmetry of U was not
utilized.

Rayleigh, being unable to advance beyond these two
necessary conditions for amplified or neutral oscillations,
decided to approximate the steadily curved velocity profile
by a profile consisting of straight pieces (polygonal pro-
file) , in order to side-step the mathematical difficulties.
The transitional conditions to be fulfilled by qI at the
bends of the profile were easily established. They corre-
spond to the condition of equal normal component of the ve-
locities and equal pressure on both sides of the bend. So
when Rayleigh** divided the profile into three strips of
constant vortex density (dlJ/dy = constant) , for example,
he arrived at an ordinary quadratic e-quation for c and
was able to show that in case of re-entrant corners, ampli-
fied oscillations are always present. But the rough approx-
imation of the velocity profile through a polygon suppresses
essential parts of the process. The profiles treated here-
inafter are always curved.

V. EXISTENCE 03’ NEUTRAL CHARACTERISTIC OSQ,ILLATIONS

We begin with the neutral oscillations which are possi-,’
ble in the case of a symmetrical channel profile, and which,
according to Rayleigh, insure a singular point c = O with-

—————————______ _____ ________________________ _______________________
‘!
;/pp *That c e Uwx for the spqcial case of Ull c

\
files without an inflection point), is “re”adily
forming the int2e#ral term

I

o~ [~ L(cP) + V L(9)~ dyw.
———

0 (pro-
se’”enby

**See reference 1 (Vol. III, p. 17). O. Tietjenls discus-
sion on boundary-layer profiles is similar.

hA’ — -. —.
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in the.’zone ● If ~“ is other than
.

zero in this critical
point -“-say,. equal to Cpo - th previously cited transi-
tional ~u%stitution (9) and (13), upon change from positive
to negative y, that is, or. passage

f
rom chanilel center to-

ward the wall,.,sufi.denly creates at V’ an additive compo-
Ult

ileilt “- —–9- i U V. , whereas (p remains continuous.
~to

It will

be shown that such an abrupt increase is impossible with a
neutral characteristic Oscillation. To this end, we consid-
er the expression:

(24)

Inci.de~~tally we ad,d that (24) is proportional to the
time average of the product of both disturbance velocities;
that is, it is intimately connected with the morflentum trans-
port of the disturbance. Since q in the case of neutral
oscillations satisfies a differential equation with real
coefficients ~ both yr and ~i must individually satisfy

the differential equations Consequently, (24) is constant

so long as no sin~ular points occur in the differential
eouation. As a result of the cited su?.den Srowth of VJf.
on passiilg throush the singular point
creases suddenly upon transition from
through the singular point, and by an

-TII

U=c, (24) also ii~-
greater to smaller y
amount

as is z-eadily seen from a simple calculation of the %ehavior
of q a-nd V’ a.t the sin~ular point, Since, according to
the bo-:.ndary conditions, the term (24) vanishes at both the
center ~,l-,dtfik~Fall, there is no possibility for such a sud-
d.cn increase. Consequently, either q must be equal to O
at the ~in~ular noint for t~~e neutral characteristic oscil-

latioils, i.e,, only the regular solution Q1 s-a~plies tile
neutral characteristic oscillation, or else the singular
point l~ust drop out altogether, wlicnce U“o = o; that is,

the phase velocity must equal the fundamental velocity Us
at the inflection point , provided, of course, tpnat the
nrofilc ~ias one.,.

Starting with the possibility of q=o at the criti-

cal point, we compare . .
~.
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m - . . ., ( ,)cp”= az, ++-- V
- c ‘ -- -. -...

1’ with

“’=(ti-%)f ““”
.. ,..

15

(16)

(20j
. .

and con~are .tho.se solutions ~1 of (36) with the solutions
fx of (2,0), ‘both of. which di~appear at the critical point
and whose power expansion “starts ‘at the critical: point with
y. Then, .. ....’

u-f~ = ––––~
U’o ,,;

(25)

l~ultiplying (16) by f~, and (20) by 91 followed by
integrating from the critical po”int .(subscript o) , gives

fl ..and- 91. are , i,naccord with the assumption for nega-
tive y (from critical point toward”the wall) negative at
first,, and the term on the”’right-hand side, ’posit~ve. So
long as fl and VI are negative, therefore,

,?
f!% ~tl
——.— __—
f~ 91

and VI < fl (27)

Since f~
( )

is still “negative at the wall = - –S—Ufo

rather than” passing through zero, Cpl can so”much less
disappear at the wall unless. !.c’”= .0.” Then, of. course, both
f~ and cpl .d.isappear at the wall .at which. the critical

.point then falls,

Ap.plyi,ng the above argument t:m.the case C.=o to the
zone between wall (Yw = 0) aWd center (YW = b), gives
for this zo’ne, ‘ “ , .,

v
“w.

~’~ fi --cpl f~l ‘~~2fl”~l”dYw~? (28)
m .. ~~.0 ..

..

cp~ > fl’ u—..—
= Ut,w

.
,.;

(29)

_IL = _“_ and ~1,
..’.

so long as fl =
Ulo are positive,u lW Since

,, ,
,,~m ,,



in, the center ftl = !JL.._* (), it follows from (28)
u~w!,..

---- (& >(), that is , ql’,l> 0, in the center. According-
W

lYi no ~rI corresponding” to” ct2 > 0 can satisfy the

%ouildary condition at the center. T’his condition thus com-
pels ~=o at the ce,nter which, in conjunction with the
previous condition C=o leads to the regular solution

u’”.—.-— or with other notation, to q=”u, ” which’ remainsfl = U,w

as the only one for a characteristic solution and actually
is sucfi.a one, according to t.-heproperties of U*

As the only characte~?istic oscillation existing in the
same zacner for profiles with or withovt an inflection
point, we obtained the a%normal oscillation with a = O,
C=o; that is, w“ith infinite wave’ leilgth and vanishing
wave velocity and mitk the symmetrical amplitude distribut-
ion q = U6 This solution itself has be~n known for a
long ;:ime ; we prove here its singularity.

?Iowever,. fundamental vel.oci,typrofiles with an inflec-
tion point may also have a,n.eut.ral characteristic oscilla-
tion for which c =. Us (fundamental velocity at the in-
flection point). Mathematically, the question is as to the
proof that the Sturm-Lionville formula

cp’’+Acp - _–Lz!!.––(p n o
U“U5

with the .conditio.ns V= Ofor. yw=Oand ~’=Ofor
yw = b, aside from the. infinitely many positive character-
istic ~ values existing according to”general theorems,
has also a negative characteristic value h = - a2 (fig. 3).

The proof proceeds -from the solution V = U - Us for
a=o, which has disappearing taugent in tlie center.” This
boundary condition in the center is rmintained for the so-
lutions studied at Ct*o. The addition of 0?>() S30WS
up the drop of these solutions fron’ the’ center” tows.r+ the
wall , vith the result that the nodal point 9 = O of these
solutions, which for ~=() lies at the inflection point
of t-ne fundament:fl veloci-ty, finally approaches the wall;
that is, we have the des’.iredcharacteristic oscillation -
(fig. 4). The conclusion of the steady,dependence of nodal
point position on the pa,r”ameter (a?) is, as known, made

/
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in proof of the oscillation theorem (reference 4). Since
m-, the parameter (here Ct?).,may.h.ave...ony.positiveve values, it

summarily follows that always one, and only one,! &uch SyIIl-
metrical disturbance flow is possible, %ecause characteris-

k tic oscillations with several nodes (p = O
)

can e,xist only

[ for a negative parameter. The existence of the characteris-
tic solution could, moreover, also be proved %y repeated\
application of our previous deduction. We call this charac-
teristic solution ~s and put its parameters a = as, c = Us.

Any doubt as to the possible occurrence of an antisym-
metrical disturbance flow for C=us with ~ = O in the
center , is refuted in a subsequent section,

Lord Rayleigh himself had pointed to another possible
solution for Uff = o;” According to the frictionle”ss dis-
turbance equation (5), it might be conjectured that at such
a point a solution U=c existed; that is, a disturbance
confined only to the critical layer U=c itself. Consid-
ering the high values of the differential quotients of Q
in such an oscillation, the friction must in any event be
taken into consideration. S,inc.eL. Hopf (reference 3) has
proved that these oscillations are damped, they are merely
mentioned,

VI. EXISTENCE OF AMPL13’lED CHARACTERISTIC OSCILLATIONS

Their existence under certain conditions will be proved
by considering solutions adjoining the previously deduced
neutral characteristic solutions. Our method is vaguely
reminiscent of the well-known perturbation theory of the
characteristic values (reference 5) with, however, substan-
tial modifications imposed by the prevalent singularities.
Rather than proceeding, as customary, from the known to the
hypothetical solution, we attempt to double back from the
hypothetical (amplified) solution to the known (neutral)
characteristic solution-

Let ~n represent the neutral characteristic solution
and C~j CLn its parameters, the parameters c (complex)

m and a ,~eing assumed, One solution ~~ is to satisfy the
disturbance equation with these parameters w“ithout, however,
being a characteristic solution, whereas VI is to comply
with a boundary condition, say, that on the wall. In this
manner Y1 is defined up to one factor; c, CL, and VI are
subsequently appropriately determined as being adjacent to

. . . ... . . -. ..—-... —-— . ..

*
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Cn, ~nz a,md.~n.. ,. .,. , ,. ... .
,:,. .:..., .,.. . . . ..”.”

“S”u!btrac.t.ing,,,thedi.fferent.ial.,equa,tion fo:r”.‘.~n:..:.,.. .
,-.,.

(u, - ‘CD) (’~’”n - Qj2~ ~n) ‘ U1l.C#~;+,’~ ~
.,

,.’,

from that for Cpx:
.,.

.“ .(ue ‘“” &2q1),-ull,@l=o ~ ,“c) (~111 -

give’s ,.,.
.. ...‘.,.

(u - c)
{
(QI - ~n’)’f- ~2 (VI - ~n)} - U’t ‘(VI - ~n)

.{
=“ (c - Cn)q?n ‘-l-: ,(U - c) ‘@ ‘-::(U-’ ~n)’..tian””qn

. . }

~ contains. on.lY , ‘Tn: and the di-sturbanc,e paramet ers,
ing assumed. c as’ complex, “we have in reality no zero
point of U - c, that is, no singular point in the differ-
ential equation for ,TJI- Vn. Be it:noted that the coeffi-
cients of th.~,homogeneous part ~1 - Wn of: (33:) correspond
to those of the differential equation for’ VI.

Then. with VII as a linear solution of

.

fi30)

,.

(31)

(32)

(33)

.(34)

Hav-

(3i)

independent of VI, we can write VI - ~n in form of

with integration COil’stailtC in which, by normalizing
,,

VI ~fI1- ~fl Q1l=- 1

The integral is to extend from the wall as subscript w
.... ...,...
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indicates. The problem then reduces to f-tnding thetieces-
5-, sary and .suffici,ent condition w,hrichsatisfies the boundary

condition at the center: thrtiugh “@Ij: -that i-$;

~
..

&l +- * or

else Q’I ‘- qtn = O. With b as ‘the distance of the wallb
from the channel center, we, have for
‘(35): . .,,.”; ~~ ; :,;.

9’:x,- Q’”n~ “tpfl Jb g.’:~~~”dy’w “ ~tlI
o

... ,
. .. .. . ... ... :’

Yw = ~, according. t.o

; .g:”cp~’’clyw-1-c“r.p.f~
o

,,..”: (36)
To deduce a necessary condition, it is assumed that ‘ “
:q~,l= o in the center’,. SO:that :Uqr’~l :~e,comes:.,other tihan

zero in view of the presumed linear independence of ~1.

Then, ‘of’course, it follow”s:that “ ‘

fbgyl. dYm= o.. ., (37)
“cl

in accordance t’o (36) . This c“ond,ition, “sufficient since
for Yw=~J. ,:1 ,,.,” ,according to’ (36)

q’~”[1 -“”’c - J g“’@l;l;dywj = o ‘(38)
0’

as well as
.

‘T 1[1 -C-’ ~“g VI’1,dyw]’= cpn : (39)
o ,.

according to (35) .
,.,.

‘Ut ~n is not zero in t’hb cent”e”rbecause there

Cp:n=o, whence the term in the %rackets must likewise be

other than zero. co~seq~ently, ,,~!.I.= (). in, (38.).

. Now we prove the existence. o.fsolu$ion..s with ampl.ifica-
tion for profiles with inflection points by means of (37),
for it ~’”ermits the “calculation of c’ (at: least near Cn)’
as function of a. (near an). ~~ ... ,

We first,.consider the v,.icinity,of % = U:? cn = an. = 0“
The solutionB> ~1 adjacent to this neutral c-haracterist~”~,
solution. of, the disturbance equatio,n with small ~a.rarnete,rs
e (“assumed, complex. a,nd..with”’po sit”’i,~e‘imaginary’ part) +nd,,
a (real) is established through (pI= O at’””thewall ,an.d’

the further condit iOn that th”e’der$.~ativeo’f” ~1 “at the
,wali’ equals tha”t’Q:”, ~:n~’,“that,is, cpt:l.,= “u~w” for, y= = 0.., . . ..!

..”..’ ,. ..,. . . . .:
..:..,’,’.

.1 ______
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(41)

by “having recourse to the differential equation for ~I”

Accordingly, the condition

O?[c@’I + CL2(U - C) CPIIdyw = O (42)
.,,

must be met for a characteristic solution, according to
(37). *

~]le evaluati.oll of (42) proceeds on t-he derivations of

several approximate representations ~1. It does nOt suf-.
fice to approach VI through ~n, l)ecau,sethe operation

must be effected in the dangerous proximity of a singulari-
ty. We again expand according to ~ from “the singular
point u=~=~ + i Cij so that n is approximately

ie;
equal to y - ------ As before, subscript c denotes the

TJ!c
values of U! , etc. at t’ne singular point; Cr is c::osen

po sit ive , The expansion is then made for a range extendin~
on the oile hand, from the sir.gular point ,to the wall, where

~llc Ca
~ approximates - --:— - and on the other hand, to

~lc au! >“- ‘

a small positive y=~; the latter (c) to le chosen so as

to rialze C2 Cr
small relativo to -—_.— whereas c is lar{ge

iul~j ‘

relative to -.—.-——,;;CI , Here as well as later, it is simply as-

sumed that ci proves of snaller order of r~agnitude** than

cr. Accordingly, we assume c as being about eqnal to
3/4

!+–
Utc ; dI is to equal Ulw at the wall. The expan-

———————————-—.——————--.——.—..——.-—————..—.--—-———--.—-—-—----.—--——————————..———---—

*This condition (42) can also be proved direct with ~tI =

o in the center by substituting (U-C) ~lp~-U”~I for

ct2(u-c)q~ according to (31).
** TY.is relation s’nip between cr and ci is already indicated
by the fact that the roughest approximation for ~1, namely,

u, ~;ives an expression for Cr according to the integral
equation (42) , but not for ci.
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the singular point, gives

. .......

The development of ~1 with two unknown coefficients
B is:

b

21

A and

By determining A and B from the initial conditions, we ob-
tain for ~1 in the cited zone up to terms of the approxi-
mate order of cr2 :

(43)(
u“

)(

u“
+ c . C2 —_Gz_ 1+Utc

––QT log ?-l
)c

The imaginary part of
log(~’ )

———
U:c is -. i n, while

that of log ~ at y=~ is equal to i _=f—— which, ac-
cu~c

cording to the definition of c is very small.

The region of y=~ up to the channel center yw=b

requires a representation of the maximum imaginary part in

~1 . Since C$ ci–_,
–~!c we can for this range, develop

.

according to Ci, which affords as a first approximation:

[

+ U!l
v “ - ~–:~;; –—–-2- i ci + ~

(u - 1 ‘

aq=o
Cr)

Now it is possible ,to set up a fundamental system of
solutions, one of which satisfies the initial condition

v 1> “0’=0 for y=~’= the other ~ = O, qt = 1. In



22 N.A. C.A. Technical Memorandum’’”No. 792

the a%sence of singularities the”development’ may be effectrn ‘
ed according to parameters i C,i and ct2, and it is found

that in this fundamental system the first imaginary compo-
nents go with CiO The indicated development of ~ starts
with

~=Qz(y)+ic i Qz(Y) + ~2 Q3(Y)

where the Q has real, restricted values which are not de-
pendent on parameters ci and ct2. . Q1 may be explicitly

expressed, according to the early statements about (20).
By suitably combining these fundamental solutions, the
joining to (43) may be effected for y= <, ,Here again,
. is to be’ of lower order of magnitude than cr. Remem-

~~ring the remark about (43), according to which the imagi-

(44)

~~o~~”(42) can be evaluated: “~1 changes for c = a = O
steadily to U, With this rough approximation (42) gives
the eqtiation for Cr to the first approximation:

b
- Cr U’w + Cr @l’(b) -I-a2 j U2 dyw = O

0

If, however, the condition of orthogonality is com-
plied with, then ~’1(~) = O, whence

(45)

that is, actually positive, which” proves the assumption
about Cr as being in accord with the condition of ortho-
gonalitx. To define ci demands closer approximations

..———————————..————...-----------------------------------------------------

*The Sljatenent abOUt !1 can also be confirmed insofar as

an explicit expression for ~1 ‘can be given, at least for.’,
‘w dyw

Ulw C(u-c) OJ ,---–-;~-$a=o, that is, y~= - as is read-

ily seen when written in the differential equation.

. .
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(43) or (44,).for .91. There is obtained ~
w.>,,-. ... . . .

y -“:”:‘u::w -’””-~i, w. - ‘ ..2

‘Ci “= Ctz”’cr –––~ ‘n f U-dyw= c.r.2

u~w
–’~ IT

. ~-. ~lw..
.,. ,. ...

Equations (45) and (46) contain’ ””thenecessary and
same t:ime.sufficient .condition’s for the existence
fi.ed characteristic solut ions.. It remains to be established
whether these conditions conflict with ‘the assumptions rela-
tive,to the disturbance parameter made incidental to Q1.
As to”(45), this has been proved; as to .(’46”),only’ the fact
that ci > 0 was utilized in “the representatio”n of ~1

(“46)

at the
of ampli~

should be noted. Equation (46) can be complied with only
when the profiles have an inflection point, where u“~ > 0.
For the others, u“~ c o, so tilat we obtain a contradic-
tion in accordance with the first formula of Rayleigh. And ,
as the assumptions for cr and ci are also confirmed,
the existence of amplified characteristic oscillations in
the case of profiles with inflection points is proved. It
is seen that ci increases so much more with Cr as, un-
der otherwise identical conditions, Uff is greater at the
wall.

Although this ‘very fact proves the instability of such
profiles, it should be very instructive to construct a
neighboring solution with ariiplificat~on for the neutral
characteristic solution 9s with the parameters Cn = Us
and an = as. Again denoting this particular solution” by
~1 and the parameters near Us and % py C, a, we put

c-us= AC = ACr + i Ci

a2 - a2s = Aa2
(47)

Ci again being assumed positive, so that (37) suitably
transformed with the aid of the differential equation for
v~ s becomes:

Ojb~-+!-a’
b

------ VS qI Qw + ofAa2 (?5 qI Q= = O
0- ~) .(u”’-’u~)

(48)

Now cp~ is visualized as normalized, so that it is ex-
actly equal to 1’at the inflection Point. If y is the coo-
rdinate starting at this point , th~ development of ~s
starts with l+ky where k is constant, which need not
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be known further. We nay regard QI as. determined by the

fact that it becomes 1 at the singular point Uc = c =

us+ A Cr + i c’i and satisfies the boundary condition
cp~ = o. We again effect th~cdeveloprnent about the singular
point in terms of ~=y-~;, that is, at first, for an

“ The development of ~1, a’ti”cbrdir.g”tofrl
,

U1’ ‘
.,,

.,
VI =1 +––%)logx. +kz ‘t-l~tc< ,

,,.

while ,;’

‘TS = l+k~s+”k~
.,, u~c ,

Owin?; to the steady” transition from”’ @I into

ishing Ac and A~2 , the constants k and kl , determiiled

by the condition at the wall, ,’differ but little. Then the
integration, according to (48) for the interval of y be-
tween - ~ and +c, gives for the first integral in (48)
(limited. to terns at least linear iil At):..

I& i ~

Ufc
(51)

starts with

(49)

(50)

Qs for van-

or, when considering that u“ ~ throu~h” development from
the inflection point yw=s becomes equal to u“&5c————— >

UI ~

where u’~’~ is assumed negative and Ul”s’ positive.

u“t~ Ci 11 U’”s——.-_—..-.——+
r!J s2

-t--;-2 A Cr n i
~s

(52)

Outside of this iilterval VI may again be developed,

———.-————————+——————.-..————.-.-..———.—————.—.—————..-——————————.———.——.-

*C is, on the one hand, chosen so small that a few terms
of a development of VI according to ~ suffices for

Iy[ < c, that Iu - U~~ ~Ac for Iyl > c and ~-~~:

and VI can be developed according to the p,ara~.eter Ac.

,.
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according to the parameters ‘Ac and Aa2.” The first ap-

proximation- (linear. in_Ac),.for..~he mi,ssing constituent of
the first integral of (48) is o’btained,’by substituting”- ~S

for VI in this zone:

{
v +:i-y TS2

b
AC o

U!l
dyw + J –-–—– ~, PS2 dyw

s-l-c(u - U“5) }
(53)

s

Trom the determination of C, it follows “that the tran-
sition c-o can be effected (up to terms which, like c,
disappear) within the brackets without changing the value.
We put:

E contains only known
the constituents which
quently,

(54)

quantities and remains finite, because
become infinite, cancel out. Conse-

U“l b

{
u“!

E ACr - ––~z– cin+A~2 ~ ~s2 dyw+i CiE+ ––~% nAcr
}
=0 (55)

TJt5 o U15

The explicit interpretation of this relation requires

the knowledge of 3 and Jb 9 S2 dYw J which would call for

the calculation of the pr%ven neutral characteristic solu-
‘ion ~s. But the existence of a neighboring characteris-

tic oscillation is readily apparent without it. To illus-
trate, assume E<O as can be proved (section VIII)* Then
the imaginary part of (55) gives:

456)

Since . according to assumption is to be positivd$
and Utl& ne~~tive, A cr should in this case, be negativei=
Writing ci according to (56) in the real part of (55) “ -.,
gives:

{

ulI&2~2
Acr 1 + –––-

}

A~2 b

~ OJ VS2 dYwu, 4 -2- = - -—-
s E

.

(57) ‘

which proves that a, satisfactory Solution of the necessary
and sufficient ‘condition for amplified characteristic os-
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collations is possible as soon as Aa
2

is chosen negative.
It can also be proved that for E = O, in which Acr=~

or ~>o, an amplified characteristic oscillation would
exist as soon as A CL2 is ~egative. Continuation of the
characteristic solutions over a in the zone around as
is therefore only possible in one direction, namely, for
decreasing ~, where E should also have the same sign,
The order of magnitude of ci, according to the above for-

mulas is at least as great as that of A cr.’ The result is

the start of the development of function c(a! at two
points, namely, for ~=() and cl=cts in general formu-
las.

VII. EQUILIBRIUM OF BOUNDARY-LAY3R PR03’ILES

A particularly important case is now analyzed as to
stability. Idealized to a certain extent to suit our pur-
poses, the boundary-layer profiles are to be so defined that
the velocity U rises from O at the wall to Umax at

distance 8, and then remains constant to infinity (fig. 5) .
At yw=a, a discontinuity in U“ may le permitted”, for,

integration of the differential equation for ~ over a
small interval around YW=6S shows that nevertheless, in

addition to 9$ V’ also must remain continuous at this
point.

NOW a fundamental system of v solutions can be set
up for the zone U = constant = Umax,
and Cp = e+aYW,

namely, cp = e-E’YW

in which? when a is positive, the second
may not occur because of its infinite growth in, a charac-
teristic oscillation. The characteristic function in the
zone from yw=6toyw=m behaves like e-aywo Our

analysis shall be restricted to the zone osyws& so as

to rule out the infinitely remote point, which is an esseil-
tial singular point of the differential equation. Then the
characteristic solution, aside from 9 = O at the wall
(YW = 0), must satisfy the other boundary condition

q? +aCp=Oforyw=& (58)

in order to make the joining with the cited solution form
e-?J:rw

, possible.

The neutral characteristic solutions are established
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very similarly to those for profiles in tl?e channel, and
from an analogous conclusion it follows thatn. o ~, c 5 Umax...... .,—..
and that as “fa’~as pro fiie’s””~yith”out&n i.nfle-c”ti’d”fi-””p-o”in’t
are ~oncernbd, orily the neutral characteristic solution
Cp=U, c=CL=O exists. ~t$ donstruetioh proceed~ from
the solution of tfie differential equation for c = Us, a =

o, which satisfies the boundary condition for. yw = b.

But this solution itself is simply U - Us. Changing to .
~~>o while preserving the value of v at yw=8bY

normalizing, the Cp value is increased twofold: first, as
an increase of ~ for yw = 8 corresponding to the bound-
ary condition 9’ = - a Q upon advance to smaller Yw ; sec-
ond, as effect of a on the coefficients of the differen-
tial equation, as known from the channel profiles. Finally,
when a becomes large enough, ~ ceases to be negative at
the wall (fig. 6). For this a,= as, where CP = O at the
wall, the characteristic solution CPS existsa

Now we construct their’neighboring amplified character-
istic solutions. The previous formulas for the channel pro-
file are in any case in the neighborhood of qn=u,c=
~=o not to be transferred by simple limit process to the
boundary-layer profiles, because there it gave, for in-
sta-nce,

(45)

so that for boundary-layer profiles, where 3 goes to in-
finity, the integral would become infinite. For this rea-
son, a new integral condition is derived for ‘the existence
of ail adjacent characteristic solution, the analysis again
being restricted to the finite zone o~yw</j.

Subtracting the differential equation for the neutral
characteristic solution ~n from that for the adjacent so-
lution VI , we o%tain

(34)

It is simplest to derive a necessary condition that
‘I be

IQ -.
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a characteristic. solntion., as. follows: : The differential
equation for ~~’ .:,,”’. , ‘,, ,.

is wrikten syrn301i&.iiY L(VI) =’ o, so that the alove equa-

tion for ““Vi- ~n becomes:”

~(CJ)I- ~n) = g

tiext we formulate:

(- -k
dq ,)———
Q ‘Yw=g

(59)

which with consideration to (58) gives the necessary condi-
“’”tion:

j%gdYw=(%n - ~) (~I”~n) _ (60)

o YW–8

That this condition is also sufficient, is seen in similar
fashion as in section VI. We form

Considering the. condition (60) looked upon as fulfilled,
and ~11 expressed as.

the right-hand side becomes:

o

,,,

and the whole equation (61) may be written as:
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,>...,. . . . ,.. .
The multiplier of

~il-+’ ~ ~1 -- . .
on the left side ‘is differ-

ent from O, because according to (35) and.fl(60), it is:

q21{l-c- ) g~~1 dyw + (an - ~) ~11 %},=vn(63)
o. .

for >+i’,= 8 * and ~n(~) + O; other~ise Cprn(8) = O for

Y~=6, that is, q~a would have to disappear.* ~,C,onse- ,

quentlj, the bracketed term does not disappear and
@’l+aV1=O for yw=b, according to (62).

The determination of ~1 near Qn= U, c= a=,O as

before., through “VI = O and 911 = U$w. at the wall, is

followed by the”evaluation of the new ’integral condition
(60):

or a Umaxz-——.—_——
Cr = Ulm (54)

A comparison of this formula with the previous one re-
veals another power of & at the limiting transition from
chanilel to boundary-layer profiles. The amplification is
(deductions ‘as-before, especially with formula (44)):

ac u“ cr2 UN
–––:;–~~ TrUmaxz = w

Ci = ————.—

w
U1W2 (65)

The relationship existing between both formulas for
Cr (45) and (64) becomes so much clearer ‘when comparing
symvletrical channel profiles, which are to have a variable
U from y~ = o to yw=g, but constant U“= Urnax over

a greater length 2bl around the center, ti:iththe boundary-
layer prOfileS (COmpare third profile in,fig. 2). 91 iS
for the channel profile in the +icinity of constant U ap-
proximately:
————————-—__ ~—,____________ ______________ ____________ __________
*Tha~ ~n(~)~+.o is also. readily apparent from,”the cited.
construction of the neutral..characteristic solutions.
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~a(bl+~) ~-ayw + ~-a(bl+a) ~+~y~
u ——— ——...——— —-—-.——,———— ——— —-—.-—-..——— —
ma x ~CLll + ~-abi

.,

The constituent Jb a’ U ~i ‘Yw in (42) becomes equal

to a ‘w.ax2 tanh a bl 8 and approaches a2 Urn-ax’%~ for

small a bl according to (45) , and approaches a Umax2

for large a bl in accordance with (64) . The validity of

(45)” is therefore contingent upon a bl~ 1, which for

boundary-layer profiles, where bl->~ is impossi”ole, no

matt~r how small a may be , in which case formula (64) !
holds for Cr=

As to the adjacent amplified oscillation for 9s, a=

as, c= Usl suffice it to state that (56) and (57) are
preserved; only the t-here-existing ‘integral needs to be ex-
tended to ~=~.

VIII. ILLUSTRATIVE EXAMPLES

T’nese examples treat the neutral characteristic SOIU=
tiOils y’s, previously referr”ed to, as well as the formula-s

for wave velocity and amplification in tha viciility of a.

o and a= as. First we assume sinusoidal chanilel pro-
files. Thus ,

The velocity Us at th~ inflection point is then connected
witil s, the distance of the inflection point from the
wall, through the relation:

(67)

which follows from U=() for yw= o, whence the differ-

ential equation for a characteristic solution at C=us
runs ,2s follows:,,.

, (68)

To allow at the same time for the boundary condition
at the wall, we Tut 9 .=,.sin~LY; p is determined fro,W

b,
.



~~OA,C@AO. Tec~.ni~al Memorandum N.o- 792. 31

the boundary condition for yw = h. To,r a, the differen-
tial” equatio”n gives: . , .,.,..

r 1 .“

(69)

Since CZs<$ and.’ a2 is always positive, p may as-

sume only the value TT/2 in the center, according to the
boundary condition Vr = O, but not the n value , corre-
sponding to ~ = O. The result is therefore the character-
istic function

and

sin YJ=f ‘1-r
‘b–5—.——————

sin — —
:;

for s = $, ab = 0.559 IT, for example (fig. 7).

For the amplified adjacent solutions with
file in the vicinity of Cr = O, a = O:

Cr = 0,462 a2 bz Umax

$.1)
Ci . 7*59 _:Z:, _L_ .

Uma~ Umax llf’’(a;y”

in the vicinity of Cr = ‘US = 0.414 Umax, ctb =

Cr = 0.061

Ci = 0.194

‘ib = 0,336-——
umax

C@ w Umax +

umax - Oo468

- 0.82.1 –cJ–
Umax

where ctb must be smaller than 0.559 Il.

(70)

(71)

this pro-

(72)

0.559 l-r

0.226 Umax

Cr

(73)

We proceed now to the sinusoidal boundary-layer pro-
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‘files, for which
. .

foru= us -1-(Umax sin

(74

u for

The differential equat
yw~fi runs as follows:

ion for n

o

the zone

ql!l (X2 Cp+
1———-.——

(8 - Sr

l-r’——
4

(75)

with the condi tions:

qj=o

~t +-

posit

condi

for yw = O

ctq=o for Y~

ive. 3y making

,tion’”gives:

P Y~———
6’

ass

130un

umed

dary

sin thea. wa

other

,s

a=-

.ation

1—————

l-~
8

‘1?

fur

‘i-r..--=
2

cot p

nis’nes

P—————
sill,p

(76)

tion:

(77)

therial he fur relaThe different

We consider only positi
would give no new chara
equation (77) , sin p >

.

.!

ve valu
cterist
O. Th

P>_———— =
sin p

ic func~~
,es of

.

,erefore,

P

as
on.

negative p
In view of

and, since

1——....
‘1 -

TT<.—— —
S.2’
8

I-T

P
to
of
ca

mu
be
th

ses

st be smaller th’an
positive, p = l-T/2
e transcendental eq
, follows:

l-r,

a
uat

‘according to
ccording to (7
ion (77) for s

(
6)
ev

77).
● Th
eral

As
,e so
spec

a is
lut ion
ific

‘..
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I?or S=c). ,.p=. -;,.cl= o
*_ ..- .: .’.,.....

.. for”’ s = $ .P =“..658 ;’ =.118;’4’;’ : .’&;= o*;& ~ ~78)
.:( )180 ‘ . 1

= :& :“ ‘“” “ ,’132;5 ‘: ‘= ~,,’675+““for ‘,s,,2,.’ P =,,0.737 ~ (=
)~. ‘i~ti-m ‘ 7 ‘%. . . :, 1,.. , .:

,.,’ ‘.. ,

The characteristic fun”cti.on %ecomes: ;
... . ... ”’: .,

PYW . . .
sin —--—

Qs = ––––5$– for

“1

os’~w~~ ., ,.

sin -—
. . ,,

6
‘“’(79)

,.
I?o’ra c,los”erdes.crip,ti,on“of the shape of “~s we

point t-o the” posit io”n of the ‘rn’ax’imumat ~_ = ~_. Tigure
2p

For the boundary-layer profile wit-h ‘ s’=’ ~ near

cr~o> a = ,0, the amplified neighboring solutions are:

Cr = 1.025 a S Umax
.“

=“ 7.59- ~~r? ,
‘ p,j~ .

Ci —— ..—=
umax rnax 7“41 (’;::Y’” “~

.“ :,
(80)

in the vicinity of ‘ Cr =“‘us“= 0.414 ‘Uma~, ‘Cta’= O“.3“56I-T
,.

.’?F.= Q~082 ~2 ’52 Uma”x ~’O.”312 Umax’ “. ,,,
,,,,’ ., ..

Ci = 0s250 Umax - 0.604 Cr (81) ,
,,, :.

Pi6———_ = 0a280 -
u

0.675 –YL2”
ma x Urea=

w“here aa must be smaller than 0.356 IT.



Figures 9 and 10 show Cr versus a and 13i versus

Cr according to (72), (73), (80), arid (81). The start
and finish of the curves are shown as heavy lines connect-
ed ‘by dashes after Interpolation, so’as to give an idea of
the probable amplification. No conclusions are drawn
therefrom. If it is preferred to obtain the entiro distri-
bution of “the cited curves the attempt at generally appli-
cable formulas must be foregone in favor of a calculation
fiiting, the particular case. And that itself is easy,
once the difficult problem of the existence has been ex-
plained.

Translation by J, Vanier,
National Advisory Committee
for Aeronautics
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